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Abstract

The ability to map individual nucleosomes accurately across genomes enables the study of
relationships between dynamic changes in nucleosome positioning/occupancy and gene regula-
tion. However, the highly heterogeneous nature of nucleosome densities across genomes and
short linker regions pose challenges in mapping nucleosome positions based on high-throughput
microarray data of micrococcal nuclease (MNase) digested DNA. Previous works rely on addi-
tional detrending and careful visual examination to detect low-signal nucleosomes, which may
exist in a subpopulation of cells. We propose a non-homogeneous hidden-state model based on
first order differences of experimental data along genomic coordinates that bypasses the need for
local detrending and can automatically detect nucleosome positions of various occupancy levels.
Our proposed approach is applicable to both low and high resolution MNase-Chip and MNase-Seq
(high throughput sequencing) data, and is able to map nucleosome-linker boundaries accurately.
This automated algorithm is also computationally efficient and only requires a simple preprocess-
ing step. We provide several examples illustrating the pitfalls of existing methods, the difficulties
of detrending the observed hybridization signals and demonstrate the advantages of utilizing first
order differences in detecting nucleosome occupancies via simulations and case studies involving
MNase-Chip and MNase-Seq data of nucleosome occupancy in yeast S. cerevisiae.
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1 Introduction

Nucleosomes are the fundamental structural units of chromatin and consist
of approximately 146 base pairs of DNA wrapped around a histone octamer
(Kornberg and Lorch; 1999; Chakravarthy et al.; 2006). The precise position-
ing of nucleosomes along the genome has been implicated in the regulation
of gene expression (reviewed in Ercan et al. (2004)). Packaging of DNA into
nucleosomes may prevent DNA binding proteins from accessing their sites, re-
cruit transcriptional activators or repressors, and bring distant DNA sequences
into close proximity to promote transcription (Millar and Grunstein; 2006). In
the last couple of years, nucleosome positions have been mapped across the
genomes of S. cerevisiae (Yuan et al.; 2005; Lee et al.; 2007; Shivaswamy
et al.; 2008), C. elegans (Johnson et al.; 2006), and humans (Schones et al.;
2008) in various cell types and under a variety of physiological perturbations.
These studies have revealed various chromatin remodeling patterns in tran-
scriptional regulation at nucleosome resolution. In particular, Shivaswamy
et al. (2008) showed that gene activation in yeast is mainly accompanied by
the loss of one or two nucleosomes in the promoter regions, while Lee et al.
(2007) illustrated that functionally related genes share similar nucleosome oc-
cupancy patterns across their promoters. Nucleosome occupancy can hinder
the binding of transcription factors to their consensus motifs, and the fraction
of bound motifs vary between nucleosomes and nucleosome free regions (Yuan
et al.; 2005). These findings illuminated that identifying locations of indi-
vidual nucleosomes accurately is essential for studying the effect of dynamic
changes in nucleosome occupancy in the control of gene regulation. By having
a reliable map of nucleosome occupancy, one can investigate various histone
modifications at the nucleosome level to uncover the complex mechanism in
transcriptional reprogramming. Similarly, for studies investigating the effect
of physiological perturbations on nucleosome positioning, the starting point
often involves maps of nucleosome occupancy before and after such perturba-
tions. For example, nucleosome mapping experiments of Schones et al. (2008)
in resting and activated human CD4+ T cells revealed specific reorganization
patterns of nucleosomes in promoter and enhancer regions of the genome.

Numerous high-throughput experiments have been carried out to map nu-
cleosome occupancy in S. cerevisiae via tiling arrays (Liu et al.; 2005; Yuan
et al.; 2005; Lee et al.; 2007; Shivaswamy and Iyer; 2008; Kaplan et al.; 2008).
More recently, a high resolution whole genome nucleosome map for yeast
genome was developed via a high throughput sequencing technology (Albert
et al.; 2007; Shivaswamy et al.; 2008). In both platforms, the sample input
consists of mono-nucleosomes prepared via micrococcal nuclease (MNase) di-
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gestions, which degrades all but the DNA wrapped around histone proteins.
Two nucleosomes are connected by linker DNA, which is digested by the en-
zyme. The digested sample is either sequenced by high-throughput sequencing
technologies (MNase-Seq), or competitively hybridized against a control sam-
ple using high density tiling arrays in (MNase-Chip). A high percentage of
the S.cerevisiae genome is known to be occupied by nucleosomes, however
there exists substantial variation in nucleosome density across the genome. In
particular, relatively higher density of nucleosomes is observed at transcribed
regions and lower density is found in intergenic regions (Lee et al.; 2004; Bern-
stein et al.; 2004; Lee et al.; 2007; Shivaswamy et al.; 2008). Positions of
nucleosomes across the whole genome are characterized by a stretch of consec-
utive probes encompassing approximately 146 base pairs with higher signals
than the background. An interesting feature observed in many of the MNase-
Chip experiments for mapping nucleosome positions is that the magnitude of
log base 2 ratios for regions occupied by nucleosomes exhibit large variability.
Specifically, some regions of the genome thought to be occupied by nucloe-
somes actually show log base 2 ratios below the baseline. Yuan et al. (2005)
provided substantial evidence of this problem and referred to this phenomena
as unpredictable trends in hybridization. The variability in the magnitudes
of nucleosome occupancy is also observable from the high resolution MNase-
Chip data of Lee et al. (2007) and MNase-Seq data of Shivaswamy et al. (2008).
This trend in hybridization can be attributed to the heterogeneity of nucleo-
some densities across the whole genome, resulting in both stable and unstable
nucleosome occupancies. Unstable or low-signal nucleosomes are nucleosome
peaks having low maxima and may correspond to nucleosomes found only in a
subpopulation of cells (Yuan et al.; 2005). These low-signal nucleosomes may
be the most important and dynamic in regulating transcription by cycling on
and off the DNA. We will refer to these as “low-signal nucleosomes” in our
subsequent discussion.

Previous work in identifying nucleosome positions in MNase-Chip data in-
clude using a hidden Markov model (HMM) (Yuan et al.; 2005) on the observed
log base 2 ratios. Yuan et al. (2005) proposed an HMM that takes into account
the length of nucleosomal DNA and allows for one emission distribution for
each of the nucleosome and linker states, respectively. To account for a global
trend, Yuan et al. (2005) applied the HMM to a sliding window of 40 probes
and averaged the estimated model parameters and posterior probabilities over
all the windows covering a fixed probe to compute the most likely hidden state
path. In addition to the nucleosomes identified by the sliding window HMM,
they also included additional low-signal nucleosomes obtained by comparing
the median intensities of the peak and trough within a window size of 7 probes,
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which was regarded as a detrending procedure to further identify low-signal
nucleosomes. We show that applying the proposed detrending procedure to
the entire tiling array data is undesirable as it introduces higher noise level and
spurious linkers/nucleosomes in simulations and a case study of yeast nucleo-
some occupancy. Yuan et al. (2005) also provided nucleosome positions hand
picked via close visual inspection in order to capture all potential nucleosomes.
However, this heuristic approach becomes tedious when mapping nucleosome
occupancy in larger genomic regions.

To accommodate the serious drawbacks of existing methods, we propose
a fully automated approach which identifies nucleosome occupancy and ad-
dresses the length of nucleosomal DNA and the observed trends in hybridiza-
tion signals. At the core of our methodology is a non-homogeneous hidden-
state model (NHSM) tailored for MNase-Chip data measuring nucleosome oc-
cupancy. By designing the architecture for the first order (lagged) differences
of log base 2 ratios, we bypass the problem of unpredictable trends in the log
base 2 ratios. An additional feature of our approach is its applicability to
the more recent MNase-Seq data. We illustrate the methodology and bench-
mark its performance against other available methods in simulations and a
case study involving a 20 base pairs resolution yeast MNase-Chip nucleosome
occupancy data. The results of these experiments highlight the superiority
of our NHSM to other approaches especially in identifying low-signal nucleo-
somes. We also provide an illustration of its applicability to higher resolution
MNase-Chip and MNase-Seq nucleosome occupancy data. Additionally, two
consecutive nucleosomes are separated by a linker of variable length. There-
fore, a good methodology for mapping nucleosome occupancy should be able
to identify nucleosome-linker boundaries accurately. This is usually challeng-
ing for the low resolution tiling array design in which a linker is represented
by one or two probes (Yuan et al.; 2005; Kaplan et al.; 2008). Our proposed
methodology carefully exploits the structure of nucleosomes and accurately
maps nucleosome positions and therefore provides a principled framework for
studying other epigenetic events that rely on mapping nucleosome occupancy.

2 Motivation

We motivate the idea behind our methodology using the MNase-Chip data
from Yuan et al. (2005). We use the normalized median log base 2 ratios of
the 8 replicates for illustration. The top panel of Figure 1 shows the nucleo-
some profile for a region in chromosome 3 in which the nucleosomes identified
by Yuan et al. (2005) are marked with black lines (each vertical line represent-
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ing a probe), and a stable nucleosome is represented by 6 to 8 probes. It is clear
from the plot that the magnitude of log base 2 ratios of a nucleosome region
exhibits large variability. Despite having heterogeneous hybridization signals,
the plot suggests that a nucleosome is characterized by a peak in the local sig-
nal intensity, even if the log base 2 ratio is below the baseline. In other words,
a nucleosome occupied region exhibit a “bump” shape irrespective of the ac-
tual strength in hybridization signal. In addition, this plot also suggests that
using a single distribution for each of the nucleosome and linker/nucleosome
depleted regions may fail to distinguish short linkers between stable or well-
positioned nucleosomes, (i.e., linkers between well-positioned nucleosomes have
comparable hybridization strength to low-signal nucleosomes.)

Given the observed “bump” (or peak with low maxima) characteristic of
annotated nucleosomes in the original data, we consider a simple smoothing
by replacing the log base 2 ratios of probe i with the average values of probe
i − 1, i and i + 1. As evident in the middle panel of Figure 1, the “bump”
shape is enhanced in the smoothed data which enable easier mapping of the
nucleosome positions. The “bumps” also suggest that a nucleosome occupied
region is characterized by a series of decreasing positive slopes, followed by
slopes of approximately zero in magnitude and then a series of increasing neg-
ative slopes. This observation forms the modeling framework of our proposed
methodology. The first order differences automatically take care of the trend
in hybridization and thereby bring both the low and stable nucleosomes to a
comparable level. Once the nucleosome positions are obtained, one can rank
the strength of each nucleosome by the average log base 2 ratios of the probes
within the nucleosome.

The trend in hybridization and variability in the magnitudes of nucleosome
occupancy are not specific only to lower resolution MNase-Chip data of Yuan
et al. (2005) but can also be clearly seen in high resolution MNase-Chip data
of Lee et al. (2007) and MNase-Seq data of Shivaswamy et al. (2008), as
evident in Figures 15 and 17. In addition, we also illustrate that a nucleosome
occupied region is characterized by a “bump” shape, which is enhanced upon
smoothing in these two data sets (middle and right panels of Figures 15 and
17). The choice of smoothing is presented in Section 3. Since all the different
data sets share similar defining characteristics of nucleosome occupancy, for
expository purposes, our detailed discussion is mainly focused on the 20 base
pairs resolution tiling array data of Yuan et al. (2005). This tiling array
design is also used in a recent publication by Kaplan et al. (2008) for studying
H3K56 acetylation in yeast. We will demonstrate that our proposed method is
applicable and works well in detecting nucleosome positions in both the high
resolution tiling arrays and sequencing data in Section 5.2.
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Figure 1: Typical characteristics of MNase-chip nucleosome occupancy data
from Yuan et al. (2005). Top panel is the original normalized data tiling
a region in chromosome 3. The vertical black solid lines represent probes
identified as nucleosome state according to “hand picked” annotation in Yuan
et al. (2005). The vertical dotted lines are boundaries separating nucleosome-
linker states. Gray horizontal lines at y=2.5 are the nucleosomes inferred.
Middle panel is the corresponding smoothed data by taking moving averages
in a window size of 3 probes and the dots are the first order differences. Bottom
panel is based on annotation from our proposed NHSM.
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3 Hidden-state model for mapping nucleosome

positions

To circumvent the problem of decoding nucleosome occupancy locally to ac-
commodate for the observed local trends as in Yuan et al. (2005), we consider
an alternative approach to infer nucleosome positions based on first order
(lagged) differences, Ot, which we defined as:

Ot = Xt+k−1 −Xt−k,

Xt = S(Y )t,

where Yt is the observed log base 2 ratio of probe t and Xt is the corresponding
smoothed/denoised data for Yt, t = 0, ..., T . The Ot’s are to quantify the slope
at midpoint between probe t−1 and probe t to capture the “bump” shape of a
nucleosome. We define this midpoint location as mid-probe, i.e., mid-probe t
corresponds to the midpoint between probe t−1 and probe t. Although other
choices for defining the slope/gradient can be utilized, we show that the simple
first order (lagged) differences is generally sufficient in both the low and high
resolution MNase-Chip and MNase-Seq data. For Yuan et al. (2005) data, we
let Xt to be a moving average statistic in a window size of 2w + 1 probes and
Ot to be the first order difference (k = 1). That is,

Ot = Xt −Xt−1,

Xt =
t+w∑

j=t−w

Yj/(2w + 1).

We observe that substituting the log base 2 ratios by the corresponding moving
average statistic Xt’s reduces the noise in the data and enhances the shape of
peaks and troughs, but not at the expense of over smoothing the data as shown
in the middle panel of Figure 1. On the other hand, for the high resolution
MNase-Chip and MNase-Seq data, the simple moving average can be replaced
with a Gaussian kernel smoother. A detailed motivation with some analytical
results for using a Gaussian kernel smoothing is given in Appendix A.1. In
kernel smoothing, the tuning parameter is the bandwidth h. Large bandwidth
implies more smoothing, and vice versa. For Gaussian kernel, h is also the
standard deviation. That is,

Xt =

∑T
j=0 φ

(
|Gt−Gj |

h

)

Yj

∑T
j=0 φ

(
|Gt−Gj |

h

) ,
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where φ(.) is the standard Gaussian probability density function and Gj is the
genomic coordinate corresponding to Yj in base pairs. We propose choosing
h based on the size of the nucleosomal DNA. For a Gaussian distribution,
99% of the values are within ±2.5σ, where σ = h. Therefore, we choose
h = 146/5 so that the bandwidth spans the size of a nucleosome. The middle
and right panels of Figures 15 and 17 illustrate the resulting smoothed log
base 2 ratios from Gaussian kernel smoothing with this choice of bandwidth.
The Gaussian kernel smoothing is able to denoise the data and enhance the
“bump” characteristics of a nucleosome.

As motivated in Section 2, a nucleosome occupied region is characterized
by a series of positive followed by negative slopes or Ot’s, while the boundaries
of nucleosomes-linker regions are characterized by steeper slopes. Detecting
jumps in Ot’s via segmentation is a potential approach to map nucleosome
occupancy but traditional segmentation approaches do not incorporate the
length of nucleosomal DNA. In addition, since the data is obtained from tiling
arrays, spatial correlations among observations of nearby probes are expected.
To account for the length of nucleosomal DNA and the correlation structure,
we propose a non-homogeneous hidden-state model (NHSM) based on first
order differences Ot’s. Next, we give a detailed characterization of the NHSM
architecture.

Consider the state transitions given in Figure 2(a) where Ni’s represent the
nucleosome region states, Li’s represent linker or nucleosome depleted region
state and Bi’s represent nucleosome-linker boundaries. The self transitions
of N1 and N3 is to account for less stable nucleosomes which span a larger
region than well-positioned nucleosomes, termed “fuzzy” nucleosomes by Yuan
et al. (2005). Recently, Valouev et al. (2008) also provided ample evidence
for the existence of fuzzy nucleosomes in the C. elegans genome using high-
throughput sequencing data. They attributed this to the lack of constraints in
absolute positioning for some fraction of the nucleosomes across the C. elegans
genome. Therefore, we introduce state duration d(i) to capture the length
of nucleosomal DNA explicitly. Assume that a well-positioned nucleosome
(146 base pairs) is characterized by p probes, or equivalently p− 1 first order
differences. We require

∑

i∈{N2a,N2b,N2c}

d(i) + 2 = p− 1, 0 ≤ d(N2a), d(N2b) ≤ p− 3,

since at least one probe is from N1 and one is from N3 out of p − 1 probes
representing a nucleosome.

In most cases, the “bump” shape of a nucleosome on tiling arrays is sym-
metrical, which implies that d(N2a) = d(N2c). Moreover, given the state du-
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ration constraint, the state transitions can be further simplified as in Figure
2(b) by tying states N2a, N2b and N2c as N2 with a trinomial duration density:

pN2
(d1, d2, d3) =

(p− 3)!

d1!d2!d3!
pd1

1 p
d2

2 p
d3

3 ,

where p1 + p2 + p3 = 1 and d1 + d2 + d3 = p− 3.
Let bi(Ot) denote the emission distribution for observed value at mid-probe

t = 1, ..., T given unknown state i ∈ {Ni, Li, Bi}. We model bi(Ot) with
Gaussian distributions,

bBN
(Ot) ∼ N(µ1, σ

2
BN

), bN1
(Ot) ∼ N(µ2, σ

2
N1

),

bN3
(Ot) ∼ N(−µ2, σ

2
N5

), bBL
(Ot) ∼ N(−µ1, σ

2
BL

),

bL1
(Ot) ∼ N(−µ2, σ

2
L1

), bL2
(Ot) ∼ N(0, σ2

L2
),

bL3
(Ot) ∼ N(µ2, σ

2
L3

), bN2
(Ot:t+p−4) ∼ N(µ̃,Σ),

where

µ̃ = (µ2, ..., µ2
︸ ︷︷ ︸

d1

, 0, ..., 0
︸ ︷︷ ︸

d2

,−µ2, ...,−µ2
︸ ︷︷ ︸

p−3−d1−d2

),

Σ = diag(σ2
N2a

, ..., σ2
N2a

︸ ︷︷ ︸

d1

, σ2
N2b
, ..., σ2

N2b
︸ ︷︷ ︸

d2

, σ2
N2c
, ..., σ2

N2c
︸ ︷︷ ︸

p−3−d1−d2

),

and 0 < µ2 < µ1. The constraint on the mean of emission distributions is
to ensure the series of decreasing positive slopes, zero slopes and followed by
increasing negative slopes which characterize the “bump” shape of a nucleo-
some. In the case of symmetric “bump” shape, the duration density for N2

reduces to univariate density p(d1) and

µ̃ = (µ2, ..., µ2
︸ ︷︷ ︸

d1

, 0, ..., 0
︸ ︷︷ ︸

p−3−2d1

,−µ2, ...,−µ2
︸ ︷︷ ︸

d1

).

The discrete duration density assumption implies that the proposed dura-
tion in the hidden states is equivalent to a hidden-state model with a larger
hidden state space. We can recast the state transition in Figure 2(a) as Figure
3 which have the same complexity by considering all possible uni-directional
paths transiting fromN1 and incorporating the constraint

∑

i∈{N2a,N2b,N2c} d(i)+
2 = p − 1. We can equivalently let bN2a

(Ot) ∼ N(µ2, σ
2
N2a

), bN2b
(Ot) ∼

N(0, σ2
N2b

) and bN2c
(Ot) ∼ N(−µ2, σ

2
N2c

). In scenarios where we have high
resolution experiments for mapping nucleosome occupancy such as the 4 base
pairs resolution MNase-chip data of Lee et al. (2007) or 1 base pair resolution
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BN

N3
….d(N2a)

….d(N2b)N1
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N3
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L3 L2
L1

N2a

…d(N2a) …d(N2b) …d(N2c)

N2b N2c

(a)

BN

N3
….d(N2a)

N1

BN

N3

BL

L3 L2
L1

N2

P(d1,d2,d3)

(b)

Figure 2: State transition representation in NHSM. Ni represents nucleosome
states, Li represents linker states, BN and BL represent linker-nucleosome and
nucleosome-linker boundaries, respectively.
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MNase-seq data of Shivaswamy et al. (2008), the “bump” shape of nucleo-
some is relatively well characterized by a few positive slopes, followed by a
plateau and a few negative slopes. In such cases, we can reduce the range of
d1 by removing some uni-directional paths in Figure 3 and thereby simplify
the structure of the hidden state transitions.

BN

N3
….d(N2a)

N1

N1

N3

N3

N2

P(d1,d2,d3)

d
d(N2a) d(N2b) d(N2c)

= N2a = N2b = N2c

Figure 3: State transition representation in NHSM. An equivalent representa-
tion of the discrete duration density in the hidden states of Figure 2(a).

Let Qt denote the hidden state for mid-probe t. Note that if Qt = BN ,
this indicates that probe t− 1 is in linker region and probe t is in nucleosome
region. Since high log base 2 ratios represent regions that are more likely to be
occupied by nucleosomes and vice versa for low log base 2 ratios, we model the
hidden state transitions as a function of observed log base 2 ratios Xt. This
framework implies that while the nucleosome/linker hidden state Qt dictates
the observed first order differences (a function of Xt), there is another function
of Xt which in turn influences the hidden states and gives rise to a feedback
structure. This idea is adapted from Zucchini et al. (2008) who proposed a
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mechanism to allow for such feedback. We refer the readers to Zucchini et al.
(2008) for an excellent motivation of this framework in the context of animal
behavior. We define Zt = Ot + Zt−1 for t = 1, ..., T and Z0 = X0. In the
case where Ot = Xt − Xt−1, we have Zt = Xt. This feedback structure is
best understood by considering the following graphical model representation
(Figure 4).

Z0 Z1 Z2 Z3

O1 O2 O3

Q1 Q2 Q3

Figure 4: Graphical model representation of the feedback structure. The direc-
tionality of the edges dictates the dependence structure. This model implies
that the transition from Qt to Qt+1 depends on Zt.

Let ai,j(z) = P (Qt+1 = j | Qt = i, Zt = z) be the transition probabilities
from state i to j between mid-probe t and mid-probe t + 1 given Zt. Also,
write O(t) = (O1, ..., Ot). Two assumptions arising from Figure 4 are:

P (Qt+1|Q(t), Z0, O
(t)) = P (Qt+1|Qt, Zt) for t = 1, ..., T − 1. (1)

P (Ot|Q(t), Z0, O
(t−1)) = P (Ot|Qt) for t = 1, ..., T. (2)

To avoid overparametrization, only transitions aBL,•(Zt), aL3,•(Zt) and aN3,•(Zt)
are functions of Zt’s. Other transition probabilities are assumed to be time ho-
mogeneous. We employ a logistic regression model to parametrize the hidden
transitions for BL, L3 and N3:

ai,j(Zt) =
exp(γi,j + βjZt)

∑N
k=1 exp(γi,k + βkZt)

.
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In cases where the data has been median centered at zero, we observe that
a simpler version of the non-homogeneous transition probabilities for these
three hidden states performs well (see case study). That is, we consider

ai,j(Zt) =

{

an
i,j , if Zt < 0,
ap

i,j , if Zt ≥ 0.

For instance, we can let aL3,BN
(Zt) = I(Zt ≥ 0) + an

L3,BN
I(Zt < 0) to impose

transition into nucleosome states when Zt ≥ 0. Details of model fitting are
given in Appendix A.2.

4 Simulation studies

Yuan et al. (2005) attributed the heterogeneous nucleosome density to unpre-
dictable trends in hybridization data. They applied the HMM to a sliding
window of 40 consecutive probes to address this issue. Hidden states decoding
via the Viterbi algorithm was based on average values of the model parame-
ters and posterior probabilities of all windows containing a fixed probe. We
referred to this method as sliding window HMM (SHMM). SHMM is compu-
tationally intensive and requires one to select the window size, which depends
on the trend in hybridization. Yuan et al. (2005) also proposed detrending the
data by comparing the magnitude of peak and trough locally to capture low-
signal nucleosomes. In particular, for each probe, they considered a window
size of 7 probes (∼ size of a nucleosome) centered at the probe and replaced
the observed log base 2 ratio by the difference between the median of log base
2 ratios within the window and the minimum log base 2 ratio of the two probes
adjacent to this window. They observed that the trend was effectively elimi-
nated using this procedure. We referred to this method as HMMD (detrending
followed by usual HMM to infer nucleosome/linker states).

4.1 Simulation I: Hidden Markov model with trend line

In the first simulation, we generated the data using the HMM hidden states
architecture in Figure 5(a) (or Figure S1E of Yuan et al. (2005)), in which
well-positioned nucleosomes were represented by 6 to 8 probes (N1-N8) and
delocalized nucleosomes (D1-D9) covered at least 9 probes. Nucleosome re-
gions were expected to have high log base 2 ratios whereas linker regions had
lower values. The hidden state transitions in Yuan et al. (2005) allowed for
linker regions (L) to have variable length. Conditioned on the hidden states,
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the observed log base 2 ratios were generated from Gaussian distributions,
with mean 0.7, standard deviation (s.d.) 0.2 for nucleosome states and mean
-0.7, s.d. 0.3 for linker state. We illustrated that although we were simulating
the observed log base 2 ratios, and not the first order differences, our proposed
NHSM was able to map nucleosome positions accurately.

To simulate heterogeneous nucleosome densities, we added a trend line
to the simulated data following Yuan et al. (2005). Figure 1 suggests that
the underlying trend line in the observed data resembles a curve. Therefore,
instead of adding a linear trend line as in Yuan et al. (2005), we let the trend be
a sinusoidal curve so that the synthetic data resembles the observed data to a
larger extent (Figure 6 top right panel). The bottom left panel of Figure 6 plots
the detrended data obtained by comparing peak to trough in a window size
of 7 described above. Although this procedure was able to remove the trend
in hybridization, it introduced artificial linkers within delocalized nucleosomes
and spurious “bumps” within nucleosome depleted/long linker regions and
resulting in data with higher noise level. This suggests that applying the
same detrending procedure to the whole data is not desirable. On the other
hand, a simple smoothing of the synthetic data preserved the “bump” shape
that characterizes a nucleosome (Figure 6 bottom right panel). We considered
sinusoidal curves with different periodicity (Figure 7) in this simulation study.

4.2 Simulation II: Hidden Markov model with mixture

emission distributions

Although adding a trend line results in sythetic data that resembled the ac-
tual observed data, it may not be the most realistic model to describe the
heterogeneity of nucleosome densities. We considered a more realistic simu-
lation setup to generate nucleosomes with various occupancy levels by using
mixture emission distributions for the hidden states. We enlarged the hidden
state transitions (Figure 5(b)) by introducing low and high (stable) nucleo-
some states. The stable nucleosomes (N1-N8, D1-D9) were generated from
a Gaussian distribution with mean 0.7 and s.d. 0.2. Low-signal nucleosomes
(NL1-NL8, DL1-DL8) were generated from a Gaussian distribution with mean
0.1 and s.d. 0.3 and the linker state was generated from a mixture of 3 Gaus-
sian distributions with means -0.3, -0.5, -0.7 and constant s.d. 0.3 with equal
mixing proportion. An example of simulated data is shown in Figure 8. The
middle panel again shows that detrending introduces a higher noise level to
the original data.
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D1 D6 D7 D8 D9

N1 N6 N7 N8

L

(a)

D1 D6 D7 D8 D9

N1 N6 N7 N8

L

NL1 NL6 NL7 NL8

DL9DL1 DL6 DL7 DL8

(b)

Figure 5: HMM architecture in Yuan et al. (2005). D1-D9 represent delo-
calized high nucleosomes, N1-N8 represent well-positioned high nucleosomes,
DL1-DL9 represent delocalized low-signal nucleosomes, NL1-NL8 represent
well-positioned low-signal nucleosomes and L represents a linker probe.
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Figure 6: An example of simulated data from Simulation I. The dotted line in
the top right panel is the trend line. Bottom left panel is the data detrended by
comparing peak and trough within a window size of 7 probes. Bottom right
panel is the smoothed data. Black vertical lines represent true nucleosome
probes.

50-mer probes overlapped by 30 base pairs covering a 20030 base pair region.
In both simulations, we decoded the hidden states using the usual HMM with
two emission distributions, one for linker and one for nucleosomes (without dif-
ferentiating fuzzy/well-positioned, low/high), SHMM, HMMD (detrend first,
then apply usual HMM) and our proposed NHSM (on first order differences).
The most probable path for each method was decoded via the Viterbi algo-
rithm (Appendix A.2.3).

We simulated observations for 1000 probes according to a tiling design of
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Figure 7: Trend lines in the simulated data. The periodicity of the sinusoidal
trend lines is varied in each simulation scenario.
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Figure 8: An example of simulated data from Simulation II. Middle panel is
the data detrended by comparing peak and trough within a window size of
7 probes. Bottom panel is the smoothed data. Black vertical lines represent
nucleosome probes.

4.3 Results

We compared the performance of each method via the area under a receiver
operating characteristic (AUROC) curve, by varying the posterior probabilities
of declaring a probe to be in a nucleosome (well positioned and delocalized)
state. In addition, we also evaluated the sensitivity and specificity at probe
level of the most probably path for each method. The results, averaged over
50 simulated data sets of 1000 probes, are summarized in Table 1.
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In both simulations, NHSM has a consistent result and outperforms other
methods in both the sensitivity/specificity at the 0.5 posterior probability
threshold and AUROC, since its main assumption is the “bump” shape that
characterizes a nucleosome and this characteristic is preserved irrespective of
the underlying trends in hybridization (Simulation I). HMM consistently tends
to declare fewer nucleosomes, resulting in lower sensitivity. On the other hand,
in cases where the trend line has larger periodicity, comparing the magnitudes
of peaks and troughs is able to remove the trend effect and improves the
performance of HMMD, although it is still worse than NHSM. The superior
performance of SHMM in Simulation I with larger periodicity is not surprising.
When the periodicity is large, the simulated data in each segment consisting
of 40 probes is very close the the original hidden Markov model generator
with scaled mean in the emission distributions, and therefore fitting a usual
HMM to each segment in SHMM agrees with the underlying data generator.
However, when the trend line oscillates more frequently (Simulation I) or is
unpredictable (Simulation II), the performance of SHMM decreases rapidly.
This indicates that the sliding window size in SHMM depends heavily on the
trend in hybridization. In the actual data analysis, it is hard to calibrate
the window size since the exact trend is unknown, and a reasonable number
of probes within the window size is required for obtaining reliable parameter
estimates in an HMM fit.

5 Case studies

5.1 Mapping nucleosome occupancy in MNase-chip data

We illustrated our proposed NHSM on the normalized median log base 2 ratios
of the 8 replicates from Yuan et al. (2005). The data was generated from
microarrays which consist of 50-mer oligonucleotides probes tiled at 20 base
pairs resolution, covering approximately half megabase of the yeast genome.
A moving average in a window size of 3 probes was first applied across the
whole data as the smoothing step. A well positioned nucleosome (∼146 base
pairs) is represented by at least 6 probes (Yuan et al.; 2005), which implies
that 0 ≤ d(N2a), d(N2b), d(N2c) ≤ 3. We also assumed that d(N2a) = d(N2c).
Therefore, the structure of state transitions in the hidden states is simplified
and given in Figure 9. For this case study, we considered the simpler non-
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Trend Method Sensitivity Specificity AUROC

sin(x/5) HMM 0.527 ± 0.095 0.937 ± 0.094 0.718 ± 0.056
SHMM 0.671 ± 0.042 0.783 ± 0.039 0.821 ± 0.021
HMMD 0.596 ± 0.064 0.903 ± 0.045 0.786 ± 0.037
NHSM 0.874 ± 0.051 0.873 ± 0.031 0.962 ± 0.010

sin(x/10) HMM 0.501 ± 0.065 0.969 ± 0.081 0.727 ± 0.048
SHMM 0.721 ± 0.048 0.886 ± 0.054 0.870 ± 0.022
HMMD 0.788 ± 0.043 0.898 ± 0.028 0.949 ± 0.012
NHSM 0.956 ± 0.028 0.927 ± 0.032 0.986 ± 0.005

sin(x/20) HMM 0.542 ± 0.100 0.909 ± 0.144 0.717 ± 0.077
SHMM 0.989 ± 0.006 0.992 ± 0.012 0.997 ± 0.004
HMMD 0.814 ± 0.032 0.917 ± 0.015 0.917 ± 0.015
NHSM 0.966 ± 0.025 0.922 ± 0.028 0.988 ± 0.006

sin(x/50) HMM 0.542 ± 0.086 0.959 ± 0.112 0.738 ± 0.064
SHMM 0.998 ± 0.003 0.998 ± 0.003 0.999 ± 0.001
HMMD 0.817 ± 0.031 0.899 ± 0.024 0.963 ± 0.007
NHSM 0.969 ± 0.025 0.943 ± 0.023 0.988 ± 0.005

mixture emission HMM 0.564 ± 0.131 0.996 ± 0.010 0.731 ± 0.044
SHMM 0.834 ± 0.036 0.967 ± 0.022 0.969 ± 0.007
HMMD 0.571 ± 0.107 0.902 ± 0.080 0.751 ± 0.096
NHSM 0.928 ± 0.055 0.967 ± 0.016 0.987 ± 0.005

Table 1: Mean sensitivity, mean specificity and AUROC from the 50 simula-
tions with the corresponding standard errors for each method. Sensitivity and
specificity calculations are based on the most probably path decoding in each
method. AUROC illustrates the overall performance across the range of all
posterior probabilities cut-offs.

parametric transition probabilities for BL, L3 and N3:

aN3,BL
(Zt) =

{

1, if Zt < 0,
ap

N3,BL
, if Zt ≥ 0,

aBL,BN
(Zt) =

{
an

BL,BN
, if Zt < 0,

1, if Zt ≥ 0,

aL3,BN
(Zt) =

{
an

L3,BN
, if Zt < 0,

1, if Zt ≥ 0.

where Zt = Ot + Zt−1. Since Ot = Xt − Xt−1 in this case study, we have
Zt = Xt.
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Figure 9: Simplified state transition representation in NHSM for MNase-chip
data of Yuan et al. (2005). We assume that d(N2a) = d(N2c).

This transition structure implies that if the current state is in a linker
region, a positive log base 2 ratio observed in the immediate probe imposes
transition into a nucleosome state. Similarly, if the current state is in N3 nu-
cleosome state, a negative log base 2 ratio observed in the immediate probe
imposes transition into a linker state. This transition structure appears to be
sufficient and works well on the data. We first illustrated that our proposed
NHSM is able to detect low-signal nucleosomes in the HIS3 promoter region
as shown in Figure 10. The horizontal black line between positions 721871
and 721971 is the low-signal nucleosome annotated in Figure 1B of Yuan et al.
(2005) which was only identified by further detrending the data for low-signal
nucleosomes. In particular, Yuan et al. (2005) first applied SHMM to decode
nucleosome positions, and further included additional nucleosomes identified
exclusively only by HMMD, which they labeled as low-signal nucleosomes.
Although Yuan et al. (2005) used the SHMM annotation as baseline nucle-
osomal set and added low-signal nucleosomes from HMMD to this set, this
procedure could be problematic if the boundaries of the low-signal nucleo-
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somes cut across the boundaries of flanking nucleosomes identified in SHMM.
In general, combining the two sets of annotation requires careful curation in de-
termining the boundaries of nucleosomes and linkers since the two annotations
do not coincide precisely. This low-signal nucleosome was also identified by
others according to Yuan et al. (2005) and in the high resolution MNase-Chip
experiment of Lee et al. (2007) and MNase-Seq experiment of Shivaswamy
et al. (2008), therefore it is not likely to be an artifact of hybridization. Our
proposed NHSM is able to map this low-signal nucleosome automatically and
accurately without any additional detrending. We provided an example of
a low-signal nucleosome that was still missed by further detrending in Yuan
et al. (2005) in Figure 11. This low-signal nucleosome was also annotated in
high resolution data of Lee et al. (2007) and Shivaswamy et al. (2008) and this
provides evidence against it being a hybridization artifact. We also showed
that the duration constraint in nucleosome states in our NHSM architecture
is able to distinguish real “bumps” which characterize a nucleosome from spu-
rious small “bumps” at positions 103400 (between nucleosomes 1 and 2) and
104400 (between nucleosomes 6 and 7) in the top panels of Figure 12. The
problem with detrending the data by comparing peak and trough within a
window size of 7 probes is also visible in this region. As evident in the bottom
left panel of Figure 12, detrending introduced more noise to the original data
and diminished the distinction between linker and nucleosomes.

To compare the performance of the different methods, we used the “hand
picked” annotation in Yuan et al. (2005) as the gold standard. Hand picked
annotation was based on careful visual inspection (Yuan et al.; 2005), and thus
formed a reliable nucleosome map for this tiling array data. However, it is in-
evitable that there may still exist some uncertainties in mapping nucleosome-
linker boundaries even by careful visual inspection as shown in Figure 13. To
account for the one/two probes boundary uncertainties in the “hand picked”
annotation, we allowed for one probe margin in defining sensitivity and speci-
ficity. That is, suppose that the underlying state for probe i is nucleosomal
based on “hand picked” annotation. We declare this probe to be correctly
inferred if either one of the probes i− 1, i or i+1 is annotated as nucleosomal
probe for each of the method under comparison. To measure the sensitivity
of our proposed method in detecting low-signal nucleosomes, we considered
two possible sets of true positives. The first set was defined by using probes
annotated as nucleosomes (both low and high signals) in the “hand picked” an-
notation. The second set was defined by using probes categorized as low-signal
nucleosomes by “hand picked” annotation according to Yuan et al. (2005) (that
is corresponding to score 0.25 and 0.5 in Yuan et al. (2005)).
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Table 2 summarizes the sensitivity and specificity for these methods us-
ing “hand picked” annotation as the gold standard. “Sensitivity(both)” was
obtained using all annotated nucleosomes as true positives while “Sensitiv-
ity(low)” was obtained using annotated low-signal nucleosomes as true posi-
tives. SHMM misses a very large fraction of the low-signal nucleosomes, and
thereby has extremely poor sensitivity. HMM has a higher sensitivity than
SHMM, but a much lower specificity. The methods are comparable in terms
of their specificities, except for HMM. The sensitivity analysis illustrates that
the proposed NHSM based on first order differences is able to bypass the need
for local detrending and automatically map nucleosome positions accurately.
HMMD is the worst among all, which again illustrates that detrending the
data is a difficult procedure and could potentially distort the signals in the
observed data.

We also compared the performance of our proposed NHSM, HMM, HMMD
and SHMM (from Yuan et al. (2005)) via ROC curves, by varying the posterior

Method Sensitivity(both) Sensitivity(low) Specificity

HMM 0.905 0.547 0.784
SHMM 0.849 0.231 0.965
HMMD 0.654 0.519 0.753
NHSM 0.937 0.909 0.934

Table 2: Sensitivity/specificity for the case study. Sensitivity and specificity
are computed by treating the “hand picked” annotation of Yuan et al. (2005)
as the gold standard.

probabilities of declaring a probe to be in a nucleosome (well positioned and
delocalized) state using the low-signal nucleosomes as true positive set. The
results are shown in Figure 14, which demonstrates that the proposed NHSM
based on first order differences performs better than all the other methods.
Specifically, NHSM has an AUROC statistic of 0.889 whereas the best of the
other methods has only a value of 0.808.

The above benchmarking study relied on using the ”hand picked” annota-
tion of Yuan et al. (2005) as the gold standard. We also provide an additional
benchmarking experiment in Table 3 by annotating the probes in Yuan et al.
(2005) based on the nucleosome calls from the higher resolution experiment

of Lee et al. (2007) which used a 4 base pairs resolution tiling array. Com-
parisons of different methods using this annotation as the gold standard again
indicate that NHSM uniformly outperforms other methods by identifying a
larger percentage of low-signal nucleosomes.
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Figure 10: Nucleosome occupancy in HIS3 promoter. Top left panel is the
original normalized data tiling HIS3 promoter region and using annotation
based on“hand picked” nucleosomes in Yuan et al. (2005). Top right panel
is similar to top left panel except that we plot the corresponding smoothed
data. Middle left and right panels are based on SHMM annotation in Yuan
et al. (2005) and ordinary HMM annotation, respectively. Bottom left panel is
based on annotation from our proposed NHSM. Black horizontal line between
positions 721871 and 721971 in each panel is the low nucleosome identified
by Yuan et al. (2005) after further detrending. Red and blue horizontal lines
are the nucleosome regions identified independently by Lee et al. (2007) and
Shivaswamy et al. (2008), respectively.
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Figure 11: An example of “hand picked” low-signal nucleosome for a region in
chromosome 3. Black horizontal line between positions 49841 and 49961 is an
example of “hand picked” low-signal nucleosome by Yuan et al. (2005). Red
and blue horizontal lines are the nucleosome regions identified independently
by Lee et al. (2007) and Shivaswamy et al. (2008). The additional detrending
by Yuan et al. (2005) after SHMM decoding still misses some of the low-signal
nucleosomes, but NHSM is able to capture them.

Method Sensitivity Specificity

HMM 0.893 0.653
SHMM 0.815 0.796
HMMD 0.619 0.657
NHSM 0.914 0.784

Table 3: Sensitivity/specificity for the case study using annotations from Lee
et al. (2007). Sensitivity and specificity are computed by treating the anno-
tation of Lee et al. (2007) as the gold standard.

24

Statistical Applications in Genetics and Molecular Biology, Vol. 8 [2009], Iss. 1, Art. 29

http://www.bepress.com/sagmb/vol8/iss1/art29
DOI: 10.2202/1544-6115.1454



103500 104000 104500 105000

−
3

−
2

−
1

0
1

2
3

Original data (Yuan et al. Hand Enum annot)

Position (bp)

N
or

m
al

iz
ed

 m
ed

ia
n 

lo
g 

ra
tio

s

0 1 2 3 4 5 6 7 8 9 10 11

103500 104000 104500 105000

−
3

−
2

−
1

0
1

2
3

Smoothed data (Yuan et al. Hand Enum annot)

Position (bp)

N
or

m
al

iz
ed

 m
ed

ia
n 

lo
g 

ra
tio

s

0 1 2 3 4 5 6 7 8 9 10 11

103500 104000 104500 105000

−
3

−
2

−
1

0
1

2
3

Detrended data (HMMD annot)

Position (bp)

N
or

m
al

iz
ed

 m
ed

ia
n 

lo
g 

ra
tio

s

1 2 3 4 5

103500 104000 104500 105000

−
3

−
2

−
1

0
1

2
3

Smoothed data (NHSM annot)

Position (bp)

N
or

m
al

iz
ed

 m
ed

ia
n 

lo
g 

ra
tio

s

0 1 2 3 4 5 6 7 8 9 10

Figure 12: Nucleosome occupancy for a region in chromosome 3 in Yuan et al.
(2005). Top panels are based on “hand picked” annotation. Bottom left panel
is the detrended data by comparing peak and trough within a window size of 7
probes. Bottom right panel is based on annotation from our proposed model.
The spurious “bumps” at positions 103400 (between nucleosomes 1 and 2) and
104400 (between nucleosomes 6 and 7) in the top panels are not picked up by
our model. The annotation based on HMMD deviates significantly from the
“hand picked” annotation.

5.2 Application to high resolution MNase-Chip and

MNase-Seq data

Next, we will illustrate the applicability of our proposed NHSM in mapping
nucleosome occupancy on the high resolution MNase-Chip (Lee et al.; 2007)
and MNase-Seq data (Shivaswamy et al.; 2008). In both cases, we smoothed
the data via Gaussian kernel smoothing described in Section 3 and defined
Ot = Xt+4 − Xt−5 (k = 5). Details are given in Appendix A.2.4. We first
demonstrate the utility of our proposed NHSM in annotating the CHA1 and

HIS3 promoters in the 4 base pairs resolution MNase-Chip data of Lee et al.
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Figure 13: Examples of “hand picked” annotations in Yuan et al. (2005). Left
panels are original data based on the “hand picked” annotations in Yuan et al.
(2005) for two regions in chromosomes 5 and 7, respectively. Right panels are
the smoothed data for similar regions. Although the “hand picked” nucleo-
somes are reliable, there are still some uncertainties in picking the boundaries
of nucleosome-linker, for instance between nucleosomes 2 and 3 in the top
panels and between nucleosomes 1 and 2 in the bottom panels.

(2007) (Figure 15). We observe that our proposed NHSM detects the low-
signal nucleosomes between positions 17050 and 17200 in the CHA1 promoter
(labeled 1 in Figure 15) and between positions 722700 and 722850 in the HIS3
promoter (labeled 2 in Figure 15), which were missed by the original SHMM
annotation of Lee et al. (2007). These two low-signal nucleosomes were also
identified by Shivaswamy et al. (2008) in their MNase-Seq data, indicating
that they are not artifacts of hybridization.

Since our modeling framework utilizes first order differences which capture
the “bump” shape of a nucleosome and not the observed log base 2 ratios in
the emission distribution, it can be applied to first order (lagged) differences
on tag counts/reads in MNase-Seq data. In Shivaswamy et al. (2008), 514803
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Figure 14: Receiver operating characteristic (ROC) curve. Comparison of
various methods on MNase-chip data from Yuan et al. (2005) using the set of
“hand picked” annotated low-signal nucleosomes as the true positive set.

uniquely aligned reads were generated for the normal cells via the sequencing
technology. We considered the following strategy for mapping nucleosome
positions on MNase-Seq data. Since each of the 27 base pairs Solexa sequencing
read corresponds to a mono-nucleosome of size 150-200 base pairs, we first
extended these reads to 150 base pairs according to the sequence orientation
for both the plus and minus strands. The total reads for each genomic position
is then taken to be the sum of all extended reads at the position, as shown
in Figure 16. Therefore, the total reads at every 50 base pairs on the genome
is analogous to the observed log base 2 ratios in MNase-chip data of 50 base
pairs resolution.
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Figure 15: Nucleosome occupancy at CHA1 (top row) and HIS3 (bottom row)
promoter. Red horizontal lines at y =1.5 are the nucleosome annotation from
Lee et al. (2007). Blue horizontal lines at y =2 are the nucleosome annotation
from Shivaswamy et al. (2008). Green horizontal lines at y =2.5 are the
nucleosome annotation from NHSM. Vertical dotted lines in the left, middle,
and right columns are boundaries separating nucleosome-linker states from Lee
et al. (2007), Shivaswamy et al. (2008), and NHSM respectively, as given in
the header. Orange lines are the computed Ot’s for each mid-probe.

We also illustrate the applicability of our proposed NHSM in annotating
these two promoter regions in the MNase-Seq data of Shivaswamy et al. (2008)
using a 4 base pairs resolution to facilitate direct comparison against the 4
base pairs MNase-Chip data of Lee et al. (2007). Of particular interest is the

ability of NHSM to decode three low-signal nucleosomes between positions
722200 and 722700 in the HIS3 promoter (labeled 3, 4 and 5 in Figure 17),
which were missed by the original annotation of Shivaswamy et al. (2008) as
shown in Figure 17. The NHSM annotation for these three nucleosomes is
consistent with the annotation from Lee et al. (2007). Both Figures 15 and
17 also illustrate that our proposed NHSM results in the most consistent, i.e.,
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Figure 16: Illustration of obtaining reads for each genomic position in ChIP-
Seq data. White rectangles are reads mapped to the plus strand and the black
rectangles are reads mapped to the minus strand. Panel B shows the extended
reads (150 base pairs). Panel C shows the total read for each genomic position.

greatest overlaps in annotations of nucleosome positions between MNase-Chip
and MNase-Seq data. This is desirable given that both data sets measure the
same nucleosome occupancy in yeast S. cerevisiae.

6 Discussion

The ability to map nucleosome positions accurately is crucial for investigating
changes in nucleosome occupancies and their relationship to gene regulation
since losses/gains in occupancy usually occur at one or two nucleosomes as
illustrated in Shivaswamy et al. (2008). We introduced a non-homogeneous
hidden-state model (NHSM) that automatically maps nucleosome positions
based on either high-throughput tiling array or sequencing data and is com-
putationally efficient. The modeling framework utilizes first order (lagged)
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Figure 17: Nucleosome occupancy at CHA1 (top row) and HIS3 (bottom row)
promoter. Red horizontal lines at y =20 are the nucleosome annotation from
Lee et al. (2007). Blue horizontal lines at y =25 are the nucleosome annota-
tion from Shivaswamy et al. (2008). Green horizontal lines at y =30 are the
nucleosome annotation from NHSM. Vertical dotted lines in the left, middle,
and right columns are boundaries separating nucleosome-linker states from
Shivaswamy et al. (2008), Lee et al. (2007), and NHSM respectively, as given
in the header. Orange lines are the computed Ot’s for each mid-probe.

differences which capture the “bump” shape that characterize a nucleosome
and enable accurate mapping of nucleosome-linker boundaries. The NHSM
bypasses the need for further local detrending which misses low-signal nucle-
osomes (Figure 11). We also demonstrated the pitfalls of detrending the data
with a simple method of comparing peak and trough within a window size
covering a nucleosome (HMMD). Such a detrending introduced higher noise
levels to the data in both the simulations and a case study of yeast nucleosome
occupancy data. Modeling the emission distribution on first order differences
allows our method to be applicable to both the MNase-Chip and MNase-Seq
data, since the defining characteristic of a nucleosome in both cases is the
“bump” shape. By allowing a duration distribution, NHSM is able to capture
the fuzzy nucleosomes, which have heterogenic and dynamic positions.
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The only preprocessing step required before applying our proposed NHSM
in detecting nucleosome positions is data smoothing. We have illustrated in the
case studies that simple smoothing such as moving average in a window size of
3 is generally sufficient for lower resolution tiling arrays, e.g, the MNase-Chip
data of Yuan et al. (2005). For high resolution tiling arrays and sequencing
data which have lower signal-to-noise ratio, we proposed a Gaussian kernel
smoothing with a bandwidth chosen based on the size of nucleosomal DNA,
and demonstrated that this smoothing is able to denoise and enhance the
“bump” shape of a nucleosome. Recently, Yassour et al. (2008) introduced a
method for improving the resolution of the nucleosome positions in low reso-
lution tiling arrays with overlapping probe design. In this paper, we aimed to
develop a general method applicable to both low and high resolution nucleo-
some occupancy data by specifically capturing the defining characteristic, that
is the “bump” shape of a nucleosome. However, the main idea of partitioning
a probe into smaller fragments in Yassour et al. (2008) can be easily adapted
into our framework by generating a pseudo MNase-Chip with higher resolution
and thereby improving the resolution of nucleosome positions. We provide an
illustration of this point in Appendix A.3.

The numerous examples and extensive simulations provided in this paper
demonstrate that our proposed method is able to detect linker regions that are
represented by only one/two probes, low-signal nucleosomes (Figures 10 and
11) and outperforms currently available methods. Although the underlying
architecture of our NHSM is simple, it is effective in detecting nucleosome oc-
cupancies in both low and high resolution MNase-Chip and MNase-Seq data.
Furthermore, in the datasets that we used for illustration, nucleosomal DNA
was isolated by MNase but our approach is applicable to tiling arrays and
sequencing technologies regardless of how the nucleosomes are isolated. We
conclude by stressing that accurate annotation of nucleosome occupancy based
on data from high-throughput experiments under various physiological condi-
tions forms the basis of comparing different samples to elucidate the dynamics
of nucleosome occupancy. Some examples of this line of work are by Shiv-
aswamy et al. (2008) and Schones et al. (2008), and we anticipate that the
number such examples will keep growing.
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A Appendix

A.1 Choice of smoothing for nucleosome occupancy

We investigate various smoothing algorithms for denoising the observed log
base 2 ratios in tiling arrays measuring nucleosome occupancy. We will il-
lustrate the performance of the selected smoothing algorithms on the high
resolution tiling arrays (4 base pairs resolution) from Lee et al. (2007). The
original log base 2 ratios from one replicate/array for the CHA1, HIS3 and
SAC7 promoters are shown in the top left panels of Figures 18, 19, and 20,
respectively.

We have shown that data smoothing based on moving average in a window
size (2w + 1) of 3 probes works well in the lower resolution nucleosome data
from Yuan et al. (2005). However, the data from Lee et al. (2007) has lower
signal-to-noise ratio compared to Yuan et al. (2005). Therefore, one pass
moving average using a window size of 2w + 1 = 3 is not sufficient, as shown
in top middle panels of Figures 18, 19, and 20. One possible solution is to
use a larger w. Since a nucleosomal DNA is 146 base pairs long, a nucleosome
occupied region will span approximately 32 probes. Hence, consider moving
averages in a window size of 32 probes. As given in the top right panels of
Figures 18, 19, and 20, using a larger w is able to increase the signal-to-noise
ratio, although the denoised log base 2 ratios still exhibit some wiggly pattern.

Next, as an alternative for using a larger window size, we consider iterated
moving averages using a window size of 3 probes. Let S and S(Y )t denote the
smoother function and the resulting smoothed value at probe t, respectively.
For example, S(Y )t =

∑t+w
j=t−w Yj/(2w+1) in the moving average approach. Let

k denote the number of iterations and Sk be the resulting smoother function
at the k-th iteration. Then,

S1(Y )t =
1

3
(Yt−1 + Yt + Yt+1)

S2(Y )t =
1

32
(Yt−2 + 2Yt−1 + 3Yt + 2Yt+1 + Yt+2)

S3(Y )t =
1

33
(Yt−3 + 3Yt−2 + 6Yt−1 + 7Yt + 6Yt+1 + 3Yt+2 + Yt+3)

S4(Y )t =
1

34
(Yt−4 + 4Yt−3 + 10Yt−2 + 16Yt−1 + 19Yt + 16Yt+1 + 10Yt+2

+4Yt+3 + Yt+4)
...
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The smoother function has the following general form:

Sk(Y )t =
1

3k

t+k∑

j=t−k

cjYj,

where ct−j = ct+j , j = 1, ..., k (symmetry), ct−k ≤ ct−k+1 ≤ . . . ≤ ct−1 and
∑t+k

j=t−k cj = 3k. The bottom left panels of Figures 18, 19, and 20 plot the re-
sulting smoothed log base 2 ratios for the m-th iteration, where m is minimum
k such that |Sk(Y ) − Sk−1(Y )|L2

≤ ǫ, for ǫ = 10−6.
Next, we provide a simple analytical result for smoothing based on iterated

moving averages. The collection of weights in front of the log base 2 ratios in
Sk can be viewed as the resulting probability mass function from the sum of k
independent and identically distributed discrete uniform random variables Ui

taking values {−1, 0, 1}, denoted by f . In particular, f is related to weights
in Sk(Y ) as follows:

f(
k∑

i=1

ui) =
cj
3k

for
k∑

i=1

ui = j ∈ {−k,−k + 1, ..., k − 1, k}

We provide the form of f for k = 2 and k = 3:

f(u1 + u2) =







1
9

for u1 + u2 ∈ {−2, 2},
2
9

for u1 + u2 ∈ {−1, 1},
3
9

for u1 + u2 ∈ {0}.

f(u1 + u2 + u3) =







1
27

for u1 + u2 + u3 ∈ {−3, 3},
3
27

for u1 + u2 + u3 ∈ {−2, 2},
6
27

for u1 + u2 + u3 ∈ {−1, 1},
7
27

for u1 + u2 + u3 ∈ {0}.

Then, by the Central Limit Theorem,

k∑

i=1

Ui/
√
k →D N(0, σ2) as k → ∞,

where σ2 = (32 − 1)/12. Therefore, for a sufficiently large fixed K,

f(
K∑

i=1

Ui = j) ≈ φ(j|0, Kσ2)
∑K

j=−K φ(j|0, Kσ2)
,
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i.e., a discretized Gaussian on integer support {−K, ..., K}, where
φ(z|µ, σ2) = exp [−(z − µ)2/2σ2] /σ

√
2π. In other words, the weights cj/3

K ,
j = 1, ..., K, in SK(Y )t are approximately φ(j|t,Kσ2)/

∑t+K
j=t−K φ(j|t,Kσ2).

As the number of iterations (K) increases, φ(j|t,Kσ2) → 0. Therefore,

SK(Y )t =
1

3K

t+K∑

j=t−K

cjYj

≈
∑t+K

j=t−K φ(j|t,Kσ2)Yj
∑t+K

j=t−K φ(j|t,Kσ2)
,

and

lim
K→∞

∑t+K
j=t−K φ(j|t,Kσ2)Yj
∑t+K

j=t−K φ(j|t,Kσ2)
= Ȳ .

That is, the smoothed log base 2 ratios from iterated moving average become
flatter and flatter approaching a constant Ȳ , and the choice of ǫ above is
critical to avoid over-smoothing.

The analytical result above also shows that the iterated moving average
is approximately a Gaussian kernel smoother for large k. In kernel smooth-
ing, the tuning parameter is the bandwidth h. Large bandwidth implies more
smoothing, and vice versa. For Gaussian kernel, h is also the standard devia-
tion. That is,

Xt =

∑T
j=0 φ

(
|Gt−Gj |

h

)

Yj

∑T
j=0 φ

(
|Gt−Gj |

h

) ,

where Gj is the genomic coordinate corresponding to Yj in base pairs. We
propose choosing h based on the size of the nucleosomal DNA. For a Gaussian
distribution, 99% of the values are within ±2.5σ, where σ = h. We choose
h = 146/5 so that the bandwidth spans the size of a nucleosome. The bottom
right panels of Figures 18, 19, and 20 illustrate the resulting smoothed log
base 2 ratios from Gaussian kernel smoothing with this choice of bandwidth.
The Gaussian kernel smoothing is able to denoise the data and enhance the
“bump” characteristics of a nucleosome, i.e., a series of decreasing positive
slopes, followed by slopes of approximately zero in magnitude and then a
series of increasing negative slopes.

34

Statistical Applications in Genetics and Molecular Biology, Vol. 8 [2009], Iss. 1, Art. 29

http://www.bepress.com/sagmb/vol8/iss1/art29
DOI: 10.2202/1544-6115.1454



We also investigated another simple non-linear smoothing, i.e., iterated
moving median (Tukey; 1977). This smoother is more robust and less sensitive
to sudden jumps, and is usually recommended over moving average. Mallow
(1979) proved that iterated moving median converges for odd-numbered spans
(w). However, as shown in the bottom middle panels of Figures 18, 19, and 20,
smoothing based on iterated moving median is less desirable since the “bump”
shape of the nucleosomes is not well characterized compared to Gaussian kernel
smoothing/iterated moving average. Another popular denoising algorithm is
wavelet smoothing, which requires more tuning parameters (i.e., wavelet type,
decomposition level and thresholds). The wavelet smoothing is utilized by
Zhang et al. (2008) recently for detecting nucleosomes in ChIP-Seq. However,
since we have illustrated that a Gaussian kernel smoothing is sufficient for
denoising the log base 2 ratios from both the high resolution MNase-Chip and
MNase-Seq data with a justified choice of bandwidth, we do not explore the
more sophisticated wavelet smoothing.

A.2 Model fitting for NHSM with the expectation max-

imization algorithm

Let Qt be the hidden state latent variable for mid-probe t and λ = (π,A,B)
denote the model parameters, where A is the transition probability matrix and
B is the emission distribution. Also define Zt = Ot + Zt−1 for t = 1, ..., T and
Z0 (Z0 = X0 if Ot = Xt−Xt−1 and Z̃0 = X0+...+X2k−2 if Ot = Xt+k−1−Xt−k.
See Appendix A.2.4), and let O(T ) = (O1, ..., OT ).

Two assumptions arising from Figure 4 are:

P (Qt+1|Q(t), Z0, O
(t), λ) = P (Qt+1|Qt, Zt, λ) for t = 1, ..., T − 1, (3)

P (Ot|Q(t), Z0, O
(t−1), λ) = P (Ot|Qt, λ) for t = 1, ..., T. (4)

For simplicity, we assume Z0 is fixed. The complete data likelihood is given

by:

P (O(T ), Q(T )|Z0, λ) = P (Q1|Z0, λ)
T∏

t=1

[

P (Ot|Q(t), Z0, O
(t−1), λ)

]

T−1∏

t=1

[

P (Qt+1|Q(t), Z0, O
(t), λ)

]

= P (Q1|Z0, λ)
T∏

t=1

[P (Ot|Qt, λ)]
T−1∏

t=1

[P (Qt+1|Qt, Zt, λ)]

= πQ1

T∏

t=1

bQt
(Ot)

T−1∏

t=1

aQt,Qt+1
(Zt).
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Figure 18: Nucleosome occupancy in CHA1 promoter. Different panels illus-
trate various smoothing algorithms. Vertical dotted lines are boundaries sepa-
rating nucleosome-linker states from Lee et al. (2007). Red horizontal lines at
y =1.5 are the nucleosome annotations from Lee et al. (2007). Blue horizontal
lines at y =2 are the nucleosome annotations from Shivaswamy et al. (2008).

The first equality follows from repeated application of conditional probability.
The second equality follows from the two assumptions above.

Assume that there are N hidden states. Then, the complete data log
likelihood is given by:

logP (O(T ), Q(T ) | Z0, λ) = log

[
N∏

i=1

π
I(Q1=i)
i

] [
T∏

t=1

N∏

i=1

bi(Ot)
I(Qt=i)

]





T−1∏

t=1

N∏

i=1

N∏

j=1

ai,j(Zt)
I(Qt=i,Qt+1=j)



 .

We assume that

bi(Ot) = N(µi, σ
2
i ),

ai,j(Zt) =
exp(γi,j + βjZt)

∑N
k=1 exp(γi,k + βkZt)

.
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Figure 19: Nucleosome occupancy in HIS3 promoter. Different panels illustrate
various smoothing algorithms. Vertical dotted lines are boundaries separating
nucleosome-linker states from Lee et al. (2007). Red horizontal lines at y =1.5
are the nucleosome annotations from Lee et al. (2007). Blue horizontal lines
at y =2 are the nucleosome annotations from Shivaswamy et al. (2008).

Expected complete log likelihood is given by

E[logP (O(T ), Q(T ) | Z0, λ)]

=
N∑

i=1

P (Q1 = i | O(T ), Z0, λ) log πi

+
T∑

t=1

N∑

i=1

P (Qt = i | O(T ), Z0, λ) log




1

√

2πσ2
i

exp

(

−(Ot − µi)
2

2σ2
i

)



+
T−1∑

t=1

N∑

i=1

N∑

j=1

P (Qt = i, Qt+1 = j | O(T ), Z0, λ) log ai,j(Zt).
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Figure 20: Nucleosome occupancy in SAC7 promoter. Different panels illus-
trate various smoothing algorithms. Vertical dotted lines are boundaries sepa-
rating nucleosome-linker states from Lee et al. (2007). Red horizontal lines at
y =1.5 are the nucleosome annotations from Lee et al. (2007). Blue horizontal
lines at y =2 are the nucleosome annotations from Shivaswamy et al. (2008).

E-step:

Define two variables γt(i) and ξt+1(i, j):

γt(i) = P (Qt = i | O(T ), Z0, λ)

=
αt(i)βt(i)

∑N
i=1 αt(i)βt(i)

=
αt(i)βt(i)
∑N

i=1 αT (i)

=
N∑

j=1

P (Qt = i, Qt+1 = j | O(T ), Z0, λ),
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ξt+1(i, j) = P (Qt = i, Qt+1 = j | O(T ), Zt, λ)

=
αt(i)ai,j(Zt)bj(Ot+1)βt+1(j)

∑N
i=1

∑N
j=1 αt(i)ai,j(Zt)bj(Ot+1)βt+1(j)

=
αt(i)ai,j(Zt)bj(Ot+1)βt+1(j)

∑N
i=1 αT (i)

,

where αt(i) = P (O1, ..., Ot, Qt = i | Z0, λ) and βt(i) = P (Ot+1, ..., OT | Qt =
i, Z0, λ).

M-step:

maxE[logP (O(T ), Q(T ) | Z0, λ)]

s.t
N∑

i=1

πi = 1,

N∑

j=1

ai,j(Zt) = 1, t = 1, ..., T − 1

yields

π̂i = γ1(i),






µ̂1 =
∑T

t=1
γt(BN )Ot−

∑T

t=1
γt(BL)Ot

∑T

t=1

∑

i∈{BN ,BL}
γt(i)

,

µ̂2 =

∑T

t=1

∑

i∈{N1,N2a,L3}
γt(i)Ot−

∑T

t=1

∑

i∈{N2c,N3,L1}
γt(i)Ot

∑T

t=1

∑

i∈{N1,N2a,N2c,N3,L1,L3}
γt(i)

, if µ̂1 ≥ µ̂2,

µ̂1 = µ̂2 =

∑T
t=1

∑

i∈{BN ,N1,N2a,L3} γt(i)Ot −
∑T

t=1

∑

i∈{BL,N2c,N3,L1} γt(i)Ot
∑T

t=1

∑

i∈{BN ,BL,N1,N2a,N2c,N3,L1,L3} γt(i)
,

if µ̂1 < µ̂2,

σ̂2
i =

∑T
t=1 γt(i)(Ot − µ̂i)

2

∑T
t=1 γt(i)

.

The non-parametric transition probabilities for the case study are updated as
follows:

âi,j =

∑T−1
t=1 ξt+1(i, j)
∑T−1

t=1 γt(i)
for i 6= N3, BL, L3,

âp
N3,BL

=

∑T−1
t=1 ξt+1(N3, BL)I(Zt ≥ 0)
∑T−1

t=1 γt(N3)I(Zt ≥ 0)
,

ân
BL,BN

=

∑T−1
t=1 ξt+1(BL, BN)I(Zt < 0)
∑T−1

t=1 γt(BL)I(Zt < 0)
,

ân
L3,BN

=

∑T−1
t=1 ξt+1(L3, BN)I(Zt < 0)
∑T−1

t=1 γt(L3)I(Zt < 0)
.
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Note that the parameters in the logistic regression model cannot be solved
analytically. These parameters can be optimized via a conjugate gradient
algorithm. The details can be found in Robertson et al. (2004). The com-
putation of αt(i) and βt(i) is based on the well-known forward and backward
procedures (Rabiner; 1989).

A.2.1 Forward procedure

Let αt = P (O1, O2, ..., Ot, Qt = i | Z0, λ).

• Initialization:
α1(i) = P (O1, Q1 = i | Z0, λ) = πibi(O1), for 1 ≤ i ≤ N .

• Induction:
αt+1(j) = [

∑N
i=1 αt(i)ai,j(Zt)]bj(Ot+1), for 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N .

• Termination:
P (O(T ) | Z0, λ) =

∑N
i=1 αT (i).

A.2.2 Backward procedure

Let βt(i) = P (Ot+1, ..., OT | Qt = i, Z0, λ).

• Initialization:
βT (i) = 1, for 1 ≤ i ≤ N .

• Induction:
βt(i) =

∑N
j=1 ai,j(Zt)bj(Ot+1)βt+1(j), for t = T−1, T−2, ..., 1, 1 ≤ j ≤ N .

• Termination:
P (O(T ) | Z0, λ) =

∑N
i=1 β1(i)bi(O1)πi.

The optimal hidden state sequence is obtained via Viterbi algorithm (Ra-
biner; 1989).

A.2.3 Viterbi algorithm

Define δt(i) = maxQ1,...,Qt−1
P (Q1, ..., Qt = i, O1, ..., Ot | Z0, λ).

• Initialization:
δ1(i) = πibi(O1), for 1 ≤ i ≤ N ,
ψ1(i) = 0, for 1 ≤ i ≤ N .
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• Recursion:
δt(j) = max1≤i≤N [δt−1(i)ai,j(Zt)]bj(Ot), for 2 ≤ t ≤ T , 1 ≤ j ≤ N ,
ψt(j) = argmax1≤i≤N [δt−1(i)ai,j(Zt)], for 2 ≤ t ≤ T , 1 ≤ j ≤ N .

• Termination:
P (O(T ) | Z0, λ)∗ = max1≤i≤N [δT (i)],
Q∗

T = argmax1≤i≤N [δT (i)].

• Path backtracking:
Q∗

t = ψt+1(Q
∗
t+t), for t = T − 1, T − 2, ..., 1.

A.2.4 Details of the NHSM for high resolution MNase-Chip and

MNase-Seq data

For a general first order lagged differences Ot = Xt+k−1 −Xt−k, Ot is defined
for t = k, ..., T − k + 1. We define Zt = Ot + Zt−1, and where Zt = Xt+1−k +
...+Xt+k−1. To initialize the chain, let Zk−1 = X0 + ...+X2k−2. Let us define
Z̃t+1−k = Zt and Õt+1−k = Ot so that the chain starts at Õ1. Therefore, for
the examples in Figure 15 and Figure 17:

• Initialize with Z̃0 = Z4 = X0 + ... +X8.

• Let Õ1 = O5 = X9 −X0 → Z̃1 = Z5 = X1 + ...+X9.

• Let Õ2 = O6 = X10 −X1 → Z̃2 = Z6 = X2 + ... +X10 and so forth.

The transition probabilities for Figure 15 are:

aN3,BL
(Z̃t) =

{

1, if Z̃t/(2k − 1) < 0,
ap

N3,BL
, if Z̃t/(2k − 1) ≥ 0,

aBL,BN
(Z̃t) =

{

an
BL,BN

, if Z̃t/(2k − 1) < 0,

1, if Z̃t/(2k − 1) ≥ 0,

aL3,BN
(Z̃t) =

{

an
L3,BN

, if Z̃t/(2k − 1) < 0,

1, if Z̃t/(2k − 1) ≥ 0.
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The transition probabilities for Figure 17 are:

aN3,BL
(Z̃t) =

{

1, if Z̃t/(2k − 1) < 5,
ap

N3,BL
, if Z̃t/(2k − 1) ≥ 5,

aBL,BN
(Z̃t) =

{

an
BL,BN

, if Z̃t/(2k − 1) < 5,

1, if Z̃t/(2k − 1) ≥ 5,

aL3,BN
(Z̃t) =

{

an
L3,BN

, if Z̃t/(2k − 1) < 5,

1, if Z̃t/(2k − 1) ≥ 5.

Here, the transition is based on Z̃t/(2k − 1) which is the average log base 2
ratio in the window containing probes t, t + 1, ..., t + 2k − 2. The mean tag
count in Chromosome 3 is 5.2. Therefore, we choose 5 as the threshold for the
transition probabilities.

A.3 Increasing resolution of MNase-Chip data

Recently, Yassour et al. (2008) introduced a method for mapping nucleosome
positions, tailored for constant low resolution tiling arrays with overlapping
probe design. Their method aimed to improve the resolution of the nucleosome
positions by partitioning a probe into smaller fragments. This idea can be
adapted into our model as follows: Let Yi−1, Yi and Yi+1 be the log base 2 ratios
for 3 consecutive probes from a design similar to Yuan et al. (2005). Partition
each Yi into 5 segments P 1

i , P
2
i , ..., P

5
i (Figure 21) as in Yassour et al. (2008).

Since two probes overlap by 30 base pairs, P 3
i−1 and P 1

i represent the same
genomic region. Similarly, for each of (P 4

i−1, P
2
i ), (P 5

i−1, P
3
i , P

1
i+1), (P 4

i , P
2
i+1)

and (P 5
i , P

3
i+1), we have the same genomic region. We can create a pseudo

MNase-Chip with 9 probes having log base 2 ratios Ri, where R1 = R2 = Yi−1,
R3 = R4 = (Yi−1 + Yi)/2, R5 = (Yi−1 + Yi + Yi+1)/3, R6 = R7 = (Yi + Yi+1)/2
and R8 = R9 = Yi+1 as shown in Figure 21. After generating a pseudo MNase-
Chip with higher resolution, our proposed NHSM can be readily used to detect
nucleosome occupancy.
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Figure 21: Increasing resolution of tiling arrays via pseudo probes. This is
an illustration on how we can adapt the idea of Yassour et al. (2008) in cre-
ating a pseudo MNase-Chip data from constant low resolution tiling arrays
with overlapping probe design. Yi−1, Yi and Yi+1 are the log base 2 ratios for 3
consecutive probes, whereas the P j

i ’s are the resulting pseudo probes by par-
titioning each Yi into 5 segments. Ri’s are the resulting pseudo probes in the
generated pseudo tiling array with higher resolution. The log base 2 ratios for
this pseudo tiling array are obtained by averaging the original log base 2 ratios
of the overlapping pseudo probes.
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